2025-06-09 15:07:26 +02:00

474 lines
19 KiB
Plaintext

##### hostapd configuration file ##############################################
# Empty lines and lines starting with # are ignored
# AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for
# management frames); ath0 for madwifi
interface=wlan0
# In case of madwifi driver, an additional configuration parameter, bridge,
# must be used to notify hostapd if the interface is included in a bridge. This
# parameter is not used with Host AP driver.
#bridge=br0
# Driver interface type (hostap/wired/madwifi/prism54; default: hostap)
# driver=hostap
# hostapd event logger configuration
#
# Two output method: syslog and stdout (only usable if not forking to
# background).
#
# Module bitfield (ORed bitfield of modules that will be logged; -1 = all
# modules):
# bit 0 (1) = IEEE 802.11
# bit 1 (2) = IEEE 802.1X
# bit 2 (4) = RADIUS
# bit 3 (8) = WPA
# bit 4 (16) = driver interface
# bit 5 (32) = IAPP
#
# Levels (minimum value for logged events):
# 0 = verbose debugging
# 1 = debugging
# 2 = informational messages
# 3 = notification
# 4 = warning
#
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
# Debugging: 0 = no, 1 = minimal, 2 = verbose, 3 = msg dumps, 4 = excessive
debug=0
# Dump file for state information (on SIGUSR1)
dump_file=/tmp/hostapd.dump
# Interface for separate control program. If this is specified, hostapd
# will create this directory and a UNIX domain socket for listening to requests
# from external programs (CLI/GUI, etc.) for status information and
# configuration. The socket file will be named based on the interface name, so
# multiple hostapd processes/interfaces can be run at the same time if more
# than one interface is used.
# /var/run/hostapd is the recommended directory for sockets and by default,
# hostapd_cli will use it when trying to connect with hostapd.
ctrl_interface=/var/run/hostapd
# Access control for the control interface can be configured by setting the
# directory to allow only members of a group to use sockets. This way, it is
# possible to run hostapd as root (since it needs to change network
# configuration and open raw sockets) and still allow GUI/CLI components to be
# run as non-root users. However, since the control interface can be used to
# change the network configuration, this access needs to be protected in many
# cases. By default, hostapd is configured to use gid 0 (root). If you
# want to allow non-root users to use the contron interface, add a new group
# and change this value to match with that group. Add users that should have
# control interface access to this group.
#
# This variable can be a group name or gid.
#ctrl_interface_group=wheel
ctrl_interface_group=0
##### IEEE 802.11 related configuration #######################################
# SSID to be used in IEEE 802.11 management frames
ssid=Marvell Micro AP WPA2
# Country code (ISO/IEC 3166-1). Used to set regulatory domain.
# Modify as needed to indicate country in which device is operating.
# This can limit available channels and transmit power.
# (default: US)
#country_code=US
country_code=DE
# Enable IEEE 802.11d. This advertises the country_code and the set of allowed
# channels and transmit power levels based on the regulatory limits. The
# country_code setting must be configured with the correct country for
# IEEE 802.11d functions.
# (default: 0 = disabled)
#ieee80211d=1
# Enable IEEE 802.11h. This enables the TPC and DFS services when operating
# in a regulatory domain which requires them. Once enabled it will be
# operational only when working in hw_mode a and in countries where it is
# required. The end user should not be allowed to disable this.
# The country_code setting must be configured with the correct country for
# IEEE 802.11h to function.
# When IEEE 802.11h is operational, the configured channel settings will be
# ignored and automatic channel selection is used. When IEEE 802.11h is enabled
# but not operational (for example, if the radio mode is changed from "a" to
# "b") the channel setting take effect again.
# (default: 0 = disabled)
#ieee80211h=1
# Operation mode (a = IEEE 802.11a, b = IEEE 802.11b, g = IEEE 802.11g,
# Default: IEEE 802.11b
hw_mode=b
# Channel number (IEEE 802.11)
# (default: 0, i.e., not set)
# Please note that some drivers (e.g., madwifi) do not use this value from
# hostapd and the channel will need to be configuration separately with
# iwconfig.
channel=3
# Beacon interval in kus (1.024 ms) (default: 100; range 15..65535)
beacon_int=100
# DTIM (delivery trafic information message) period (range 1..255):
# number of beacons between DTIMs (1 = every beacon includes DTIM element)
# (default: 2)
dtim_period=2
# Maximum number of stations allowed in station table. New stations will be
# rejected after the station table is full. IEEE 802.11 has a limit of 2007
# different association IDs, so this number should not be larger than that.
# (default: 2007)
max_num_sta=255
# RTS/CTS threshold; 2347 = disabled (default); range 0..2347
# If this field is not included in hostapd.conf, hostapd will not control
# RTS threshold and 'iwconfig wlan# rts <val>' can be used to set it.
rts_threshold=2347
# Fragmentation threshold; 2346 = disabled (default); range 256..2346
# If this field is not included in hostapd.conf, hostapd will not control
# fragmentation threshold and 'iwconfig wlan# frag <val>' can be used to set
# it.
fragm_threshold=2346
# Rate configuration
# Default is to enable all rates supported by the hardware. This configuration
# item allows this list be filtered so that only the listed rates will be left
# in the list. If the list is empty, all rates are used. This list can have
# entries that are not in the list of rates the hardware supports (such entries
# are ignored). The entries in this list are in 100 kbps, i.e., 11 Mbps = 110.
# If this item is present, at least one rate have to be matching with the rates
# hardware supports.
# default: use the most common supported rate setting for the selected
# hw_mode (i.e., this line can be removed from configuration file in most
# cases)
#supported_rates=10 20 55 110 60 90 120 180 240 360 480 540
# Basic rate set configuration
# List of rates (in 100 kbps) that are included in the basic rate set.
# If this item is not included, usually reasonable default set is used.
#basic_rates=10 20
basic_rates=10 20 55 110
#basic_rates=60 120 240
# Short Preamble
# This parameter can be used to enable optional use of short preamble for
# frames sent at 2 Mbps, 5.5 Mbps, and 11 Mbps to improve network performance.
# This applies only to IEEE 802.11b-compatible networks and this should only be
# enabled if the local hardware supports use of short preamble. If any of the
# associated STAs do not support short preamble, use of short preamble will be
# disabled (and enabled when such STAs disassociate) dynamically.
# 0 = do not allow use of short preamble (default)
# 1 = allow use of short preamble
preamble=1
# Station MAC address -based authentication
# 0 = accept unless in deny list
# 1 = deny unless in accept list
# 2 = use external RADIUS server (accept/deny lists are searched first)
macaddr_acl=0
# Accept/deny lists are read from separate files (containing list of
# MAC addresses, one per line). Use absolute path name to make sure that the
# files can be read on SIGHUP configuration reloads.
#accept_mac_file=/etc/hostapd.accept
#deny_mac_file=/etc/hostapd.deny
# IEEE 802.11 specifies two authentication algorithms. hostapd can be
# configured to allow both of these or only one. Open system authentication
# should be used with IEEE 802.1X.
# Bit fields of allowed authentication algorithms:
# bit 0 = Open System Authentication
# bit 1 = Shared Key Authentication (requires WEP)
auth_algs=1
# Send empty SSID in beacons and ignore probe request frames that do not
# specify full SSID, i.e., require stations to know SSID.
# default: disabled (0)
# 1 = send empty (length=0) SSID in beacon and ignore probe request for
# broadcast SSID
# 2 = clear SSID (ASCII 0), but keep the original length (this may be required
# with some clients that do not support empty SSID) and ignore probe
# requests for broadcast SSID
ignore_broadcast_ssid=0
# Associate as a station to another AP while still acting as an AP on the same
# channel.
#assoc_ap_addr=00:12:34:56:78:9a
# Static WEP key configuration
#
# The key number to use when transmitting.
# It must be between 0 and 3, and the corresponding key must be set.
# default: not set
#wep_default_key=0
wep_default_key=2
# The WEP keys to use.
# A key may be a quoted string or unquoted hexadecimal digits.
# The key length should be 5, 13, or 16 characters, or 10, 26, or 32
# digits, depending on whether 40-bit (64-bit), 104-bit (128-bit), or
# 128-bit (152-bit) WEP is used.
# Only the default key must be supplied; the others are optional.
# default: not set
wep_key0=31323334353637383930313233
wep_key1=41424344454647484940414243
wep_key2=51525354555657585950515253
wep_key3=61626364656667686960616263
##### IEEE 802.1X-2004 related configuration ##################################
# Require IEEE 802.1X authorization
#ieee8021x=1
# IEEE 802.1X/EAPOL version
# hostapd is implemented based on IEEE Std 802.1X-2004 which defines EAPOL
# version 2. However, there are many client implementations that do not handle
# the new version number correctly (they seem to drop the frames completely).
# In order to make hostapd interoperate with these clients, the version number
# can be set to the older version (1) with this configuration value.
#eapol_version=2
# Optional displayable message sent with EAP Request-Identity. The first \0
# in this string will be converted to ASCII-0 (nul). This can be used to
# separate network info (comma separated list of attribute=value pairs); see,
# e.g., draft-adrangi-eap-network-discovery-07.txt.
#eap_message=hello
#eap_message=hello\0networkid=netw,nasid=foo,portid=0,NAIRealms=example.com
# WEP rekeying (disabled if key lengths are not set or are set to 0)
# Key lengths for default/broadcast and individual/unicast keys:
# 5 = 40-bit WEP (also known as 64-bit WEP with 40 secret bits)
# 13 = 104-bit WEP (also known as 128-bit WEP with 104 secret bits)
#wep_key_len_broadcast=5
#wep_key_len_unicast=5
# Rekeying period in seconds. 0 = do not rekey (i.e., set keys only once)
#wep_rekey_period=300
# EAPOL-Key index workaround (set bit7) for WinXP Supplicant (needed only if
# only broadcast keys are used)
eapol_key_index_workaround=0
# EAP reauthentication period in seconds (default: 3600 seconds; 0 = disable
# reauthentication).
#eap_reauth_period=3600
# Use PAE group address (01:80:c2:00:00:03) instead of individual target
# address when sending EAPOL frames with driver=wired. This is the most common
# mechanism used in wired authentication, but it also requires that the port
# is only used by one station.
#use_pae_group_addr=1
##### Integrated EAP server ###################################################
# Optionally, hostapd can be configured to use an integrated EAP server
# to process EAP authentication locally without need for an external RADIUS
# server. This functionality can be used both as a local authentication server
# for IEEE 802.1X/EAPOL and as a RADIUS server for other devices.
# Use integrated EAP server instead of external RADIUS authentication
# server. This is also needed if hostapd is configured to act as a RADIUS
# authentication server.
eap_server=0
# Path for EAP server user database
#eap_user_file=/etc/hostapd.eap_user
# CA certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
#ca_cert=/etc/hostapd.ca.pem
# Server certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS
#server_cert=/etc/hostapd.server.pem
# Private key matching with the server certificate for EAP-TLS/PEAP/TTLS
# This may point to the same file as server_cert if both certificate and key
# are included in a single file. PKCS#12 (PFX) file (.p12/.pfx) can also be
# used by commenting out server_cert and specifying the PFX file as the
# private_key.
#private_key=/etc/hostapd.server.prv
# Passphrase for private key
#private_key_passwd=secret passphrase
# Enable CRL verification.
# Note: hostapd does not yet support CRL downloading based on CDP. Thus, a
# valid CRL signed by the CA is required to be included in the ca_cert file.
# This can be done by using PEM format for CA certificate and CRL and
# concatenating these into one file. Whenever CRL changes, hostapd needs to be
# restarted to take the new CRL into use.
# 0 = do not verify CRLs (default)
# 1 = check the CRL of the user certificate
# 2 = check all CRLs in the certificate path
#check_crl=1
# Configuration data for EAP-SIM database/authentication gateway interface.
# This is a text string in implementation specific format. The example
# implementation in eap_sim_db.c uses this as the file name for the GSM
# authentication triplets.
#eap_sim_db=/etc/hostapd.sim_db
##### IEEE 802.11f - Inter-Access Point Protocol (IAPP) #######################
# Interface to be used for IAPP broadcast packets
#iapp_interface=eth0
##### RADIUS client configuration #############################################
# for IEEE 802.1X with external Authentication Server, IEEE 802.11
# authentication with external ACL for MAC addresses, and accounting
# The own IP address of the access point (used as NAS-IP-Address)
own_ip_addr=127.0.0.1
# Optional NAS-Identifier string for RADIUS messages. When used, this should be
# a unique to the NAS within the scope of the RADIUS server. For example, a
# fully qualified domain name can be used here.
#nas_identifier=ap.example.com
# RADIUS authentication server
#auth_server_addr=127.0.0.1
#auth_server_port=1812
#auth_server_shared_secret=secret
# RADIUS accounting server
#acct_server_addr=127.0.0.1
#acct_server_port=1813
#acct_server_shared_secret=secret
# Secondary RADIUS servers; to be used if primary one does not reply to
# RADIUS packets. These are optional and there can be more than one secondary
# server listed.
#auth_server_addr=127.0.0.2
#auth_server_port=1812
#auth_server_shared_secret=secret2
#
#acct_server_addr=127.0.0.2
#acct_server_port=1813
#acct_server_shared_secret=secret2
# Retry interval for trying to return to the primary RADIUS server (in
# seconds). RADIUS client code will automatically try to use the next server
# when the current server is not replying to requests. If this interval is set,
# primary server will be retried after configured amount of time even if the
# currently used secondary server is still working.
#radius_retry_primary_interval=600
# Interim accounting update interval
# If this is set (larger than 0) and acct_server is configured, hostapd will
# send interim accounting updates every N seconds. Note: if set, this overrides
# possible Acct-Interim-Interval attribute in Access-Accept message. Thus, this
# value should not be configured in hostapd.conf, if RADIUS server is used to
# control the interim interval.
# This value should not be less 600 (10 minutes) and must not be less than
# 60 (1 minute).
#radius_acct_interim_interval=600
##### RADIUS authentication server configuration ##############################
# hostapd can be used as a RADIUS authentication server for other hosts. This
# requires that the integrated EAP authenticator is also enabled and both
# authentication services are sharing the same configuration.
# File name of the RADIUS clients configuration for the RADIUS server. If this
# commented out, RADIUS server is disabled.
#radius_server_clients=/etc/hostapd.radius_clients
# The UDP port number for the RADIUS authentication server
#radius_server_auth_port=1812
# Use IPv6 with RADIUS server (IPv4 will also be supported using IPv6 API)
#radius_server_ipv6=1
##### WPA/IEEE 802.11i configuration ##########################################
# Enable WPA. Setting this variable configures the AP to require WPA (either
# WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either
# wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK.
# For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys),
# RADIUS authentication server must be configured, and WPA-EAP must be included
# in wpa_key_mgmt.
# This field is a bit field that can be used to enable WPA (IEEE 802.11i/D3.0)
# and/or WPA2 (full IEEE 802.11i/RSN):
# bit0 = WPA
# bit1 = IEEE 802.11i/RSN (WPA2) (dot11RSNAEnabled)
#wpa=1
wpa=3
# WPA pre-shared keys for WPA-PSK. This can be either entered as a 256-bit
# secret in hex format (64 hex digits), wpa_psk, or as an ASCII passphrase
# (8..63 characters) that will be converted to PSK. This conversion uses SSID
# so the PSK changes when ASCII passphrase is used and the SSID is changed.
# wpa_psk (dot11RSNAConfigPSKValue)
# wpa_passphrase (dot11RSNAConfigPSKPassPhrase)
#wpa_psk=0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
#wpa_passphrase=secret passphrase
wpa_passphrase=12345678
# Optionally, WPA PSKs can be read from a separate text file (containing list
# of (PSK,MAC address) pairs. This allows more than one PSK to be configured.
# Use absolute path name to make sure that the files can be read on SIGHUP
# configuration reloads.
#wpa_psk_file=/etc/hostapd.wpa_psk
# Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The
# entries are separated with a space.
# (dot11RSNAConfigAuthenticationSuitesTable)
#wpa_key_mgmt=WPA-PSK WPA-EAP
wpa_key_mgmt=WPA-PSK
# Set of accepted cipher suites (encryption algorithms) for pairwise keys
# (unicast packets). This is a space separated list of algorithms:
# CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
# TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
# Group cipher suite (encryption algorithm for broadcast and multicast frames)
# is automatically selected based on this configuration. If only CCMP is
# allowed as the pairwise cipher, group cipher will also be CCMP. Otherwise,
# TKIP will be used as the group cipher.
# (dot11RSNAConfigPairwiseCiphersTable)
#wpa_pairwise=TKIP CCMP
wpa_pairwise=TKIP
# Pairwise cipher for RSN/WPA2 (default: use wpa_pairwise value)
#rsn_pairwise=CCMP
rsn_pairwise=CCMP
# Time interval for rekeying GTK (broadcast/multicast encryption keys) in
# seconds. (dot11RSNAConfigGroupRekeyTime)
#wpa_group_rekey=600
wpa_group_rekey=600
# Rekey GTK when any STA that possesses the current GTK is leaving the BSS.
# (dot11RSNAConfigGroupRekeyStrict)
#wpa_strict_rekey=1
# Time interval for rekeying GMK (master key used internally to generate GTKs
# (in seconds).
#wpa_gmk_rekey=86400
# Enable IEEE 802.11i/RSN/WPA2 pre-authentication. This is used to speed up
# roaming be pre-authenticating IEEE 802.1X/EAP part of the full RSN
# authentication and key handshake before actually associating with a new AP.
# (dot11RSNAPreauthenticationEnabled)
#rsn_preauth=1
#
# Space separated list of interfaces from which pre-authentication frames are
# accepted (e.g., 'eth0' or 'eth0 wlan0wds0'. This list should include all
# interface that are used for connections to other APs. This could include
# wired interfaces and WDS links. The normal wireless data interface towards
# associated stations (e.g., wlan0) should not be added, since
# pre-authentication is only used with APs other than the currently associated
# one.
#rsn_preauth_interfaces=eth0